AUTOTUNE = tf.data.AUTOTUNEtrain_dataset = train_dataset.prefetch(buffer_size=AUTOTUNE)validation_dataset = validation_dataset.prefetch(buffer_size=AUTOTUNE)test_dataset = test_dataset.prefetch(buffer_size=AUTOTUNE)
3. Use data augmentation
data_augmentation = tf.keras.Sequential([ tf.keras.layers.experimental.preprocessing.RandomFlip('horizontal'), tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),])
4. Rescale pixel values
preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input
rescale = tf.keras.layers.experimental.preprocessing.Rescaling(1./127.5, offset= -1)
You need to login in order to like this post: click here
YOU MIGHT ALSO LIKE