Get in touch
or send us a question?

Simple steps to build a model using Tensorflow

1. Load data from directory. In here, we will load MNIST sample data from library

import tensorflow as tf

fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

2. Build a Sequential model by stacking layers and compile

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])

3. Train model

history =, train_labels, epochs=10)

4. Evaluation

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss'] 
val_loss = history.history['val_loss']
plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')

Thank you!

Notify of
1 Comment
Newest Most Voted
Inline Feedbacks
View all comments
1 year ago

Hay đấy, có mentor đây rồi!