Get in touch
or send us a question?
CONTACT

Using TCNs to train model with data time series

Temporal Convolutional Networks (TCNs) are a powerful alternative to recurrent neural networks (RNNs) for sequence modeling. They use dilated convolutions and residual connections to capture long-range dependencies efficiently. Here’s an example of how you can train a TCN model for time series forecasting using Python and TensorFlow/Keras:

Step 1: Install Necessary Libraries

python

pip install tensorflow numpy pandas matplotlib

Step 2: Import Dependencies

python

import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Conv1D, BatchNormalization, ReLU, Dense, Flatten, Input
from tensorflow.keras.models import Model

Step 3: Generate Synthetic Time Series Data

python

def generate_synthetic_data(n_samples=1000, time_steps=50):
    X = np.random.rand(n_samples, time_steps, 1)
    y = np.sum(X, axis=1)  # Example target: sum over time steps
    return X, y

X_train, y_train = generate_synthetic_data()
X_test, y_test = generate_synthetic_data()

Step 4: Build the TCN Model

python

def build_tcn(input_shape):
    inputs = Input(shape=input_shape)

    # Temporal Convolutional Layers
    x = Conv1D(filters=32, kernel_size=3, dilation_rate=1, padding="causal")(inputs)
    x = BatchNormalization()(x)
    x = ReLU()(x)

    x = Conv1D(filters=32, kernel_size=3, dilation_rate=2, padding="causal")(x)
    x = BatchNormalization()(x)
    x = ReLU()(x)

    x = Flatten()(x)
    outputs = Dense(1)(x)

    model = Model(inputs, outputs)
    model.compile(optimizer="adam", loss="mse")
    
    return model

model = build_tcn(X_train.shape[1:])

Step 5: Train the Model

python

history = model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test))

Step 6: Evaluate and Visualize Results

python

plt.plot(history.history['loss'], label="Training Loss")
plt.plot(history.history['val_loss'], label="Validation Loss")
plt.legend()
plt.show()

predictions = model.predict(X_test[:10])
print("Predictions:", predictions.flatten())